WORK ACTIVITY OF CLEANER BUILDING MATERIAL WORKGROUP

Péter Medgyasszay

Independent Ecological Center, H-1035, Budapest Miklós tér 1. E.mail: megyo@foek.hu

.

Cleaner Building Material Workgroup (TEAM) was established in 1999 in Budapest. Original members were the Hungarian Assisiation of Building-biology, the St. Stephen University -Faculty of Ybl Miklós College - Labor 5, and the Independent Ecological Center.

The long-run aim of TEAM to introduce regular qualification of building materials from the point of view of building-ecology and building-biology in Hungary. To achieve this aim TEAM would like to work out a qualification method, which has a strong scientific background and is easy to adopt.

To find the adaptable method TEAM does research on international calculation and qualification methods and try work together with research institutes, ministries and trade-corporations.

In the past two years TEAM worked on two research project on the field of building-ecology and biology.

- In the frame of project called "Modification of market of building materials using economic regulations" TEAM did the research on ecological properties of building materials in the year of 2000.
- In the frame of project called "Cleaner Building Materials in Hungary!" TEAM did the research on ecological and biological properties of building constructions in the year of 2001.

Actually TEAM works in the frame of project called "Energy and cost demand of usual and environment-conscious houses" doing research on ecological properties of whole houses.

In the pre-qualification research work of TEAM the BauBioDataBank by Genossenschaft-Information-Bau-Biologie and, because of the lack of ecological and biological dates of Hungarian building materials, expert estimations were used.

BauBioDataBank is a database running on program 4th Dimension. The database makes possible to use the ecological dates of more then 1600 "elements", more then 3500 "products and materials", more then 200 "constructions" and more then 10 "buildings.

On the "Element" level of BauBioDataBank nearby the descriptions of elements and their produce-process some ecological properties, as toxicant and environment load capacity are described. Figure 1.

On the "Product" level of BauBioDataBank nearby the descriptions, the technical dates and the produce-process of products and materials some ecological properties, as primer energy content (PEI), SO_{2eq} -content, CO_{2eq} -content are desribed. Figure 2.

On the "Construction" level of BauBioDataBank, using the dates of products, building constructions can be defined and their PEI, SO_{2eq} and CO_{2eq} value can be calculated. Figure 3.

On the "House" level of BauBioDataBank using the dates of constructions, PEI, SO_{2eq} and CO_{2eq} value of houses can be calculated. Figure 4.

Figure 1. Dates on "Element" level in BauBioDataBank.

🔑 4th Dimension - [En	try for P_RODUKTE	_MATER]		_ _ 8 ×
🧮 File Edit Use E	nter <u>Q</u> ueries <u>R</u> epo	rt Special Web Server	Plug-Ins Help	_ 8 ×
TERMÉK ANYAG	Épszerk ELŐÁ	LLĪTĀS Termelēs	Faitieren statet	<u>-</u>
H-BLB ELDÄLLFTAS 41 Gyrintiasteziillittia Mehstufges, rein mertanisches Ve homogenen Zeleisesteren Muss trocken gelaget verden.	rtahran 26 _ Papierflooken	100 Road 100 Road, liste étrék 100 Ace étrékkeléke Bei der Bilandikrung Bendels alle motent Noht berdekslehtig Okkelmentamik ét ertsprachendes M	stiefen ++ Attestimtés starpin - Affeités a surde das sier Betrag a, wei in den st b úd vohanden	
BauEcoIndex Aram-mis Schweiz CH	I UCPTE Buropa	További adatok PET tartalomra Daten: (Kasser (J.308) 60	Életol Krus	
Overprise herbine 050002-restrat 37mt C01-Bindurg 92552-meetrike 92552-mee	88 112 gCD2wpkg 88 gCD2wpkg 90 1.4 gSCD2wpkg 93 2.8 hLlkg 94 0.0 hLkg 94 0.0 hLkg 94 0.0 hLkg 95 (SLA D-0123 PS) 130Datenguisid	Dates: (Keing H #2) 21 14 Detes: (LB HR0100) 322 Detes: (HB F740 20) 310 18Dokumenburok, additor is frag Detamenburok, additor is frag Detamenburok, additor is frag Patamenbur Tritel SAD 0123 95 Hischbarkonstruktur EVPS 935 Energie- und Stoffbil EVPS 935 Energie- und Stoffbil	kulturd kulturd kulturd kulturd iegystack iennach äk sontaten i Sontaten i Hulfadäk Silapoo <u>UM2nem ar Enhort</u> <u>Solan Systeme</u> Elektrofahrzeuge	

Figure 2. Dates on "Product" level in BauBioDataBank.

4	th Dimensi	on - [Entry for K_ONST	_STRU	CTUR	3]											_ 8
3	Eile Edit	<u>U</u> se Enter Queries	Beport	Spec	cial <u>V</u>	(eb Serv	ver El	ug-Ins	Help							_ 8
sz	ERKEZET	r svájci B	auEcoli	ndex s	zámít	İs			2 17 14	Divter_D	ata)					
54.0	DKU 4.121		1Kondr_	Hr 3	BKB D4	Automatik	ide liber T	main	Kalki	araistein	maser mit A	ussensan	nedemmun	g und Holantülç	poschuel une	g 145Kinstnätion
Ba Minde 17 Sort.	uEcolnd natri a pitnéra 148_1Ternék/ anyag asim	EX vájci Áramarányra sonatkoztatval 148_2 Anyagnöv	Epitão 142_3 Vestao om	narea es 148_14 Stirtistig kg/m3	tetok 148_4 SHekt Tömeg kg/m2	Scennyes Hoosttá: 140_6 C02 eq gC024q	55 8. 5 Hg-Hênt 148_5 502 eq 05024og	148_0 Hacon Idő Arts (ath) Szentnt Ev	Körryssetter Biðbilftós és karbantartás 148_10 148 gC02eg/ gK m2a m2	rhalás s Jm2 8_11 102eg/ 2a	Pri mér en BSB Inde V 148_7 sem magidul i MJ/kg	rengi elari içəkini: 148_8 ni:spütuli M.Vkg	alom - PE Előjii. +) 148_13 neto megűjuló Mű4ta2a	i Iarbantartás 148_13 megúlulii MJVmóa	TASKI hullad	CS, megjegycis az alkalmasishoz dék állapothoz, stb. O Tanica
2	5.02.1	Holzfassadensohaleng C 02a	2.8	450	10.4	274	1.55	80	04	1.13	2.0	26	1.00	8.00		
Þ	5.02	Noblatten C 03s	See. 1	453	5.7	374	1.55	25	44	1.35	2.9	35	0.47	4.07		
9	8.04.01	PP Folie/Minddialitiong	0.02	1000	0.2	2717	21.50	40	10	1.10	106.5	5.3	0.53	0.02		
đ	9.06	Celluiosetiooken	18.8	-40	8.8	112	1.4	40	22	1.28	2.8	0.8	0.50	0.18		
•	1.00	Kalk sandsteine	15.8	2000	203	76	D. 36	50	192	1.15	12	p.1	3.04	0.15		
CH-R 41 El	führt im Reihenhei 230 Fland Nati 68:10:07 - 14	I NAR Discreme, TOTAL 12RDar 52000 01 20 140 Bearbjill	83	n [685 प	279.0 uEcolndax	ikg/m2 ja/nein	Ka	2 gCO2ec	473 Jm2a g8	2.14 02eq/m	N_80 Za	K_84	6.4 VJAnža	i 13.24 MUMn2a	K.85	Datanguella Baußekolindex: >0 [5 Berechnungkn/Skizten: >0 [5188
-		<u>ه</u> ۱			Ë	R	GIBS Boul CH-I	reconi lo Data B 230 Fib	B ank ut Bi	Altalár auEcoir	nos teirás Index UCPT	 E	DRU	SKEN		Für die Daten mit dem Bromm (Europäischer Strommix)mute RauBzolnden UCFTEgenählt i
1. DA 2. DA	TENEINGABEN: Tenkorrektur	Doppelklicke in eine leere Zeite u REN: Diese können direkt in der T	nd folge de theile genv	e Engel whit ver	tereiherdi den	10			Po	U-Wert	Berechnun Ishnung Ch	4E				
_	n kAUWert Bere In Preis-Bered	chnung übernehmen Hink ode hnung übernehmen über	e in der obe r hitsertellen hiten Betten	ren Liste an und k e k-Uklet	Faid 148 o liske ansol und/sdar f	la gawînse Hessend in Ireia.	hten Piciti die geu	kte	Pre Ra	eisbere metruk	ohnung BE Hana-Skizz	н				
									Bo	oProfil Profil	Herstellun Verscheitu					
1	1															

Figure 1. Dates on "Element" level in BauBioDataBank.

Figure 2. Dates on "Product" level in BauBioDataBank.

In the pre-qualification work of TEAM a qualitative evaluative method were used. All live cycle aspect of examined building materials was with a "kv" number evaluate. To have an easy to use result the "kv" numbers were averaged. Table 1.

3	highly recommended
2	recommended
1	not recommended
0	neglected
nj	not caracteristic
na	no data available

Table 1.

Meaning of "kv" numbers.

TEAM examined the building materials in their raw material phase (attainability in national and/or global level), in their production phase (PEI, SO_{2eq} , CO_{2eq} , other environment load), in their building phase (energy demand, injurant emission), in their maintaining phase (energy demand, injurant emission), and waste material phase (energy demand, recyclable capacity). For example in the following we introduce the ecological examination of wall-materials, made by TEAM. Table 2. - Table 4.

	Usual thickness (m/m2)	Density (kg/m3)	Lambda value (W/mK)	Build in mass (kg/m2)	"U" - value (W/m ² K)	PEI (kWh/kg)	CO2 eq (g/kg)	SO2 eq (g/kg)	Life time (year - a)	
Adobe	0,45	1600	0,35	720	0,69	0,5	208	0,88	na	
Wood	0,2	600	0,16	120	0,70	1,3	-1042	2,21	50	
Burned brick (average)	0,38	1000	0,5	380	1,08	0,6	249	0,94	80	
_dense brick	0,25	1800	0,8	450	2,08	0,75	247	0,94	80	
_usual brick	0,3	1150	0,57	345	1,44	0,75	247	0,94	80	
_porous brick	0,38	800	0,2	304	0,48	0,75	247	0,94	80	
masonry block with cement	nj	nj	nj	nj						
Porenconctete	0,38	600	0,16	228	0,39	1,16	456	1,4	80	
Lightconcrete	0,38	1200	nj	456	nj	0,14	74	0,29	80	
Woodconcrete	0,3	360	0,13	108	0,40	na	na	na	80	
Concrete	0,15	2400	nj	360	nj	0,22	132	0,46	80	
Polistirol masonry block	0,25	na	na	na	na (0.28)	na	na	na	80	
Stone	0,5	1800	0,99	900	1,48	0,36	88	0,33	80	
Liaporconctere	0,3	875	0,16	262,5	0,49	na	na	na	80	
Table 2.										

Wall material examination.

attainabi	PEI	PEI	SO _{2eq}	SO _{2eq}	CO _{2eq}	CO _{2eq}	other	Sum of	
ity	(kWh/m2)	(kv-num)	(g/m2)	(kv-num)	(g/m2)	(kv-num)	e.load	process	
2	360	nj	149760	nj	633,6	nj	nj	<3,00>	Adobe
2	156	2	-125040	3	265,2	3	nj	2,67	Wood
2	228	2	94620	2	357,2	2	nj	2,00	Burned brick (average)
2	337,5	2	111150	2	423	2	nj	2,00	_dense brick
2	258,75	2	85215	2	324,3	2	nj	2,00	_usual brick
2	228	2	75088	2	285,76	2	nj	2,00	_porous brick
									masonry block with cement
2	264,48	2	103968	2	319,2	2	nj	2,00	Porenconctete
2	63,84	3	33744	3	132,24	2	nj	2,67	Lightconcrete
2	na	3	na	2	na	2	nj	2,33	Woodconcrete
1	79,2	2	47520	3	165,6	2	nj	2,33	Concrete
0	na	1	na	1	na	1	1	1,00	Polistirol masonry block
2	324	1	79200	2	297	2	nj	1,67	Stone
2	na	2	na	2	na	2	nj	2,00	Liaporconctere

Build in energy (kWh/ m ²)	Build in energy (kv- num)	injurant emissio n (kv- num)	Sum of buil- ding (kv- num)	mainta n. energy demanc (kv- num)	useden ergy demanc (kv- num)	injurant emissio n (kv- num)	Sum of maintai ning (kv- num)	energy demanc (kv- num)	recycla ble capacit y (kv- num)	Sum of waste phase (kv- num)	Sum	
na	2	3	2,5	2	1	3	2	3	3	3	2,38	Adobe
na	3	3	3	2	3	3	3	2	3	2,5	2,63	Wood
na	3	2	2,5	3	2	2	2	2	2	2	2,10	Burned brick (average)
na	3	2	2,5	3	1	2	1,5	2	2	2	2,00	_dense brick
na	3	2	2,5	3	1	2	1,5	2	1	1,5	1,90	_usual brick
na	3	2	2,5	3	3	2	2,5	2	1	1,5	2,10	_porous brick
												masonry block with cement
na	3	1	2	2	2	1	1,5	2	2	2	1,90	Porenconctete
na	3	1	2	2	2	1	1,5	2	1	1,5	1,93	Lightconcrete
na	3	2	2,5	2	2	1	1,5	2	1	1,5	1,97	Woodconcrete
na	3	1	2	3	1	1	1	1	2	1,5	1,57	Concrete
na	3	1	2	1	1	0	0,5	1	1	1	0,90	Polistirol masonry block
na	2	2	2	2	2	2	2	2	3	2,5	2,03	Stone
na	3	2	2,5	2	2	1	1,5	2	1	1,5	1,90	Liaporconctere

Wall material examination.

Table 4.

Wall material examination.

As conclusion we have to state the followings:

- There is a lack of suitable valuation and qualification method to building materials.
- There is a lack of national dates of environment and health load of production and maintenance of building materials.
- There are significant differences between building materials (as a same construction) from the point of view of building ecology/biology.

References:

- [1] Baggs, S., Baggs, J., (1996), The Healthy House Creating a Safe, Healthy and Environmentally Friendly Home. Thames & Hudson Ltd, London, UK
- [2] Bánhidi László. *Healthy Building Problems in Hungary*. CIB 82 Future Studies in Construction 'Sustainable Development and the Future of Construction' Conference Proceedings, Budapest, 7-9 Oct. 1997, Bau Data
- [3] Bynum, Richard; Rubino, Daniel: Handbook of Alternative Materials in Residental Construction, McGraw-Hill. USA, 1999.
- [4] Gerd Zwiener: Ökologisches Baustoff-Lexikon, C.F. Müller. Heidelberg, 1995.
- [5] GIBB: BauBioDataBank (softver)
- [6] Howard Nigel et al: The Green Guide to Stecification An Environmental Profiling System for Building Materiels and Components, BRE. Garston, 1998.
- [7] Krusche, P. and M.; Althaus, D.; Gabriel, I.: Ökolögisches Bauen, Bauverlag. 1982.
- [8] Novák, Ágnes; Osztrolutczky, Miklós; Nagy, Györgyi: Zöld szerkezetek / Green design, YMMF - "Az épített környezetért" Alapítvány. Budapest, 1998.
- [9] Peter Steiner: Hochbaukonstructionen nach ökologischen Gesichtspunkten, SIA. Zürich, 1995.
- [10] Talbott, John: Simply Build Green a Technical Guide to the Ecological Houses at the Findhorn Foundation, Findhorn Press. Findhorn, 1997 (1993).
- [11] Woolley, Tom; Kimmins, Sam; Harrison, Paul; Harrison, Rob: Green Building Handbook, E & FN Spon. London, 1997.